

RESEARCH AND DEVELOPMENT (SYSTEMS)

E-GENTING SDN. BHD.

JAVA PROGRAMMING STANDARDS

First Draft
Vivian Lim

12 August 2002

 - 2 -

TABLE OF CONTENTS

1 INTRODUCTION .. 3

2 JAVA PROGRAMMING... 4

2.1 General Program Layout ... 4
2.2 Program Title Block.. 4
2.3 Import Files Declarations.. 5
2.4 “Java” Class Layout .. 6
2.5 Declaration Of Instance Variables and Array Components................................ 9
2.6 Method Layout .. 11
2.7 Constructor Layout ... 12
2.8 Method Naming Conventions ... 13
2.9 Variable Naming Conventions.. 14
2.10 Comments ... 14
2.11 Indenting ... 15
2.12 IF, WHILE and FOR Statement Layout ... 16
2.13 IF/ELSE Statement Layout ... 17
2.14 DO…WHILE Statement Layout ... 18
2.15 SWITCH Statement Layout ... 18
2.16 TRY…CATCH Statement Layout.. 19
2.17 Expression Layout ... 19

3 PLAGIARISM .. 20

 - 3 -

1 INTRODUCTION

This document specifies the programming standards adopted by the Research and
Development (Systems) Department of E-Genting Sdn. Bhd. for the development of
computer programs using the “Java” programming language.

The programming standards have been defined from the standards used in the
development of the Internet games, namely the Wu Shi and FireCracker games, which
both made their debut in the Internet Tournament System (ITS).

These standards exist principally to preserve the consistency of programming style in the
“Java” language. Besides, they are also needed to facilitate the ongoing maintenance of
the system as well as in the development of the impending Intranet Gaming System (IGS)
and other future systems that will be employing the use of the “Java” programming
language.

 - 4 -

2 JAVA PROGRAMMING

2.1 General Program Layout

Each “Java” source file shall be divided into the following sections:

1. Title block,
2. Import declarations,
3. Class layout section.

Each program section and each “Java” class shall be separated from the next by a single
comment line of dashes preceded and followed by blank lines.

The following sub-sections describe the layout of each section.

2.2 Program Title Block

Each “Java” source file shall be headed by a title block similar to the example showed in
figure 2.1.

// FireSca.java - FIRECRACKER, SCALER
//
// MODULE INDEX
// NAME CONTENTS
// scaLdPix Load the pixel arrays
// scaLdScs Load scaled slides
// scaStop Stop loading
// FireSca Constructor
//
// MAINTENANCE HISTORY
// DATE PROGRAMMER AND DETAILS
// 12-11-00 JS Original
// 15-01-01 JS Allow transparent colour in reel background
// 24-02-01 JS Implemented Scaler super class
//
//---

PROGRAM TITLE BLOCK

Figure 2.1

The title block shall contain the following sections:

1. Title line,
2. Maintenance history,
3. Module index.

Every line of the title block shall begin with a comment initiator (“//”) followed by one
space. This is also applied to all the blank lines used in the title block.

 - 5 -

The title line is the first line of the source file. It consists of the file name, a dash (“-”),
followed by a short one line description of the contents of the source file in capital letters.

The “MODULE INDEX” section is only included where there is one or more methods or
constructors declared under a “Java” class.

The “MODULE INDEX” section consists of a list of the names of the methods declared
in the source file and one line descriptions of the methods. Method names begin at
column 4 and method descriptions at column 25.

The “MAINTENANCE HISTORY” section is included in all source files. It contains a
summary of changes made to the source file. The change summaries contain the
following information:

COLUMN DETAILS
4 Date of the change
17 Initials of programmer who made the change

25 Summary of the changes made

Immediately below the line “MAINTENANCE HISTORY”, the comments “DATE”
starts at column 4 and “PROGRAMMER AND DETAILS” at column 17.

The first entry in “MAINTENANCE HISTORY” contains the date the program was
written, the initials of the original author and the word “Original” as the description.

The title block is completed by a comment line full of dashes that begins with the
comment initiator (“//”) and immediately followed by dashes (“---”) up to column 79.

2.3 Import Files Declarations

Import declarations follow the title block. They are specified in a section on their own,
preceded and followed by a line full of dashes.

Every section of import files declarations is headed by a single line title in capitals letters
describing the section. The single line title should be consistent in all source files, for
example, if the word “IMPORTATIONS” is used, it should be used in all files.

An example of an import files declaration section is illustrated in figure 2.2.

 - 6 -

//---

// IMPORTATIONS

import java.util.*;
import java.awt.*;
import java.applet.*;
import java.awt.image.*;

//---

IMPORT FILES DECLARATIONS

Figure 2.2

2.4 “Java” Class Layout

The “Java” class section comes after the import files declarations section. The “Java”
class section shall contain the following sub-sections:

1. Class declaration,
2. Variable declarations,
3. Method layout,
4. Constructor layout.

An example of the format of a “Java” class layout is presented in figure 2.3.

 - 7 -

//---

// CLASS DECLARATION

class WusFrg
extends WusMep
implements WusDef, ImageObserver
{
 //---

 // STATES

 final static private int FRGNOSL = 0; // No slides
 final static private int FRGRESC = 1; // Rescale
 final static private int FRGANIM = 2; // Animating

 //---

 // INSTANCE DATA

 private Applet frgApplet; // Parent applet
 private ErrLog frgErr; // Error logging instance
 private WusMep frgPrj; // Projector instance
 private WusAni frgAni; // Animator instance
 private int frgState; // Current state
 private WusFra frgPriFra; // Primary frame
 private WusScs frgScs; // Scaled slides
 private WusFra frgFraArr[]; // Frame array
 private int frgFraInd; // Frame index

 //---

 // IMAGE UPDATE CALLBACK METHOD

 public boolean
 imageUpdate (
 Image img, // Image being drawn
 int flags, // Information flags
 int x, // Rectangle information
 int y,
 int width,
 int height)
 {
 throw new RuntimeException ("WusFrg::imageUpdate");
 }

 //---

 .
 .
 .
}

JAVA CLASS LAYOUT

Figure 2.3

 - 8 -

Each “Java” class in a source file shall be separated by a blank line, followed by a line of
dashes and then a class title in capital letters. The class title shall be “CLASS
DECLARATION” in all cases except where the class name is different from the name of
the source file. The layout for this example is illustrated in figure 2.4. A blank line then
follows the class title.

The first line of the class declaration is the class name (which certainly must be the same
as the file name) and any type of class modifiers (e.g. public, private, final etc.). The
second line is the indication to its superclass (e.g. extends [superclass name]). The third
line shall be the indication to its ‘Interface’ class or classes (e.g. implements [interface
class name]). The example of this layout is shown in figure 2.3.

If there is no reference to any superclass, the contents of the third line shall certainly be
on the second line, as shown in figure 2.4.

All class names shall begin with the uppercase and continue in lowercase. If a class
name contains more than one conjoint word, the first letter of each word shall begin with
a capital letter (e.g. LinkedList, Scaler, WusPrz, FireAni).

//---

// PRIZE ENTRY

class WusPrz {
 WusPrz przNxt; // Next prize in value order
 int przComb[]; // Combination
 int przValue; // Prize value
}

//---

// CLASS DECLARATION

class WusPzt
implements WusDef
{
 //---

 // INSTANCE DATA

 private WusPrz pztPrzFst; // First prize
 .
 .
 .
}

MULTIPLE CLASSES LAYOUT

Figure 2.4

 - 9 -

Variables declarations section immediately follows the first opening of the curley braces.

Variable declarations, method declarations and constructor declarations are indented by 4
columns (a half of one standard tab stop).

Specification of the variables declarations, method declarations and constructor
declarations shall be in sections 2.5, 2.6 and 2.7 respectively.

2.5 Declaration Of Instance Variables and Array
Components

An example of variables declarations section is presented in figure 2.5.

 //---

 // STATES

 final static private int ANIINIT = 0; // Initialising
 final static private int ANINOSL = 1; // No slides
 final static private int ANIUNOPN = 2; // Session unopened
 .
 .
 .

 //---

 // INSTANCE DATA

 private Applet aniApplet; // Parent applet
 private ErrLog aniErr; // Error log instance
 private FireReg aniReg; // Results generator instance
 .
 .
 .

 //---

 // TEXT BORDER DISPLAY OFFSETS

 final static int aniBdrXOfs[] = {-1, -1, 0, 1, 1, 1, 0, -1};
 final static int aniBdrYOfs[] = {0, -1, -1, -1, 0, 1, 1, 1};

 //---

DECLARATION OF CLASS DATA

Figure 2.5

 - 10 -

This section may further be divided into 2 or more sub-sections, if there are instance
variables and array components in a file. For example, in figure 2.5, the first sub-section
shall be the declaration of static instance variables, the second sub-section shall be the
declaration of instance variables and the third sub-section is the declaration for array
components.

Each section of the variables declarations is preceded by a blank line, a line of dashes,
another blank line and then a title in capital letters. The comment line full of dashes that
separates each section starts at column 4 and ends at column 79.

Each variable shall be declared on a single line containing the type declaration of the
variable, the name of the variable, and a comment describing the variable as indicated in
figure 2.5.

Consecutive variable declarations shall be aligned on tab stops at the following point
wherever possible:

1. Specification of the type of the variables,
2. Specification of the names of the variables,
3. Comments related to the variables.

Comments describing the variable should begin with a capital letter, continue in
lowercase and form a clause, sentence or statement.

Specification of the variable naming conventions will be described in section 2.9.

 - 11 -

2.6 Method Layout

Each method layout in a “Java” class shall be separated by a blank line, a line of dashes,
another blank line, followed by a single title that describes the method in capital letters,
and then, a blank line again. The format of the method layout shall be in accordance with
the example in figure 2.6.

METHOD LAYOUT

Figure 2.6

The first line of the method declaration is the type of the method (e.g. void, boolean, int
etc.) and any type of access modifiers (e.g. private, public or protected) together with
other type of modifiers (e.g. static, final, synchronized etc.). The second line is the name
of the method and the opening parenthesis of the argument. If the method has no
arguments, the closing parenthesis is also placed on the second line. The arguments are
then declared on successive lines indented one tab stop as shown in the example in figure
2.6. Comments for each argument are optional.

The preferred indentation levels of the argument names and comments are column 24 and
40 respectively.

If the method throws exceptions, the “throws” clause shall be placed on the line
immediately after the last argument of the method, as demonstrated in figure 2.7.

 //---

 // LOAD A COMBINATION INTO THE PRIZE TABLE

 private void
 pztLoad (
 int symb0, // First symbol
 int symb1, // Second symbol
 int symb2, // Third symbol
 int value) // Prize value
 {
 WusPrz nxt; // Next prize table element
 WusPrz prv; // Previous prize table element
 WusPrz p; // New prize table element

 prv = null;
 for (
 nxt = pztPrzFst;
 nxt != null && nxt.przValue >= value;
 nxt = nxt.przNxt
) prv = nxt;
 .
 .
 .
 }

 //---

 - 12 -

 // PROCESS AN ITS REQUEST

 public Unpack
 comProcReq (
 short ttc, // Transaction type code
 byte bdy[], // Body data
 int ofs, // Body offset
 int len) // Body length
 throws Reject
 {
 .
 .
 .
 }

METHOD WITH THROWING EXCEPTIONS

Figure 2.7

Local variable declarations, if there are any, immediately follow the first opening braces
of the method.

Local variable declarations and the outermost level of the method procedure are both
indented to the first tab stop. The preferred indentation levels for local variable names
and local variable comments are column 24 and 40 respectively.

Specification of the method naming conventions will be described in section 2.8.

2.7 Constructor Layout

Each constructor in a “Java” class shall be separated by a blank line, a line full of dashes,
another blank line, followed by the title and then, a blank line again. The format for the
constructor layout is presented in figure 2.8.

 // CONSTRUCTOR

 FireMep (
 String name,
 ErrLog err) // Error logging instance

 {
 mepName = name;
 mepErr = err;
 mepWaiting = false;
 mepMeq = new LinkedList ();
 }

CONSTRUCTOR METHOD LAYOUT

Figure 2.8

 - 13 -

The first line of the constructor declaration is the name of the constructor followed by the
opening parenthesis of the argument. If the constructor has no arguments, the closing
parenthesis is placed on the first line of the declaration. The arguments are then declared
on consecutive lines indented one tab stop as shown in the example in figure 2.8. The
indent levels for argument names and comments are the same as in method layout.
Comments for each argument are optional.

2.8 Method Naming Conventions

Methods shall be named according to the class name. Each method name shall have a
prefix taken from a part of its class name. All prefix characters are in lowercase and the
word or words that follow the prefix will each have a capital letter for the beginning of
each word. The prefix and the word or words shall be conjoined in that order to form a
one-word name. For example, if the class name is “FireFrg”, a method of the class could
be named “frgSendFrame”.

The word or words used after the prefix should be in accordance to the description of the
methods. For example, if a method in the “Scaler” class has the description of “GRAB
PIXELS”, the method shall be called “scaGrabPix”.

However, the above naming conventions do not apply to constructor and destructor
methods, and other special “Java” class methods such as the “Applet” class. Constructor
methods shall certainly have the same name as their classes and destructor method shall
have their “Java” finalizer method, which is “finalize”.

These naming conventions are important to preserve readability and understandability of
the method names. More importantly, they facilitate the use of “qref” to find all
references to a method or variable in a large system.

 - 14 -

2.9 Variable Naming Conventions

In general, variable names shall have between 1 to 18 characters.

Variables shall be named according to the class name. Each variable shall have a prefix
taken from its class name. The word or words used after the prefix shall correspond to the
meaning of the variables used. The prefix and the word or words shall be conjoined to
create a Java identifier.

Instance variables shall have different naming conventions from local variables.

For instance variables, the prefix shall start from the second capital letter of the class
name. All prefix characters shall be in lowercase and the word or words that follow the
prefix will each have a capital letter for the beginning of each word. For example, if the
class name is “WusMouse”, an instance variable could be named “mousePoint”.

For instance variables that have the “static” modifier, the prefix shall be taken from the
first conjoint word of the class name. All the letters of every static variable shall be in
uppercase. For example, if the class name is “FireDef”, a class variable could be named
“FIRESYMTOWER”.

For local variables, they shall have flexible naming conventions without having to be
named according to the class name.

2.10 Comments

Comments are inserted into the “Java” files in two manners.

In the case of declaration of class variables and instance variables, comments are placed
in the same line as the variables, adjacent to the variable item. This example is depicted
in figure 2.9.

 Image fraImg; // Frame image
 Graphics fraGra; // Graphics context
 Rectangle fraBufRect; // Buffer update rectangle
 Rectangle fraPrjRect; // Projection update rectangle

COMMENTS FOR VARIABLES

Figure 2.9

Comments for variables may also be grouped if some variables share the same comment,
as shown in figure 2.10. In this example, comments are indented to the same level as the
variables declarations and are preceded and followed by blank lines.

 - 15 -

 // Title panel dimensions

 static final int SCBTTLPANX = 0; // X position
 static final int SCBTTLPANY = 0; // Y position
 static final int SCBTTLPANW = 556; // Width
 static final int SCBTTLPANH = 60; // Height

 // 'City of Entertainment' window dimensions

 static final int SCBCOEWINX = 228; // X position
 static final int SCBCOEWINY = 5; // Y position
 static final int SCBCOEWINW = 100; // Width
 static final int SCBCOEWINH = 20; // Height

 // 'SCOREBOARD' window dimensions

 static final int SCBSCBWINX = 178; // X position
 static final int SCBSCBWINY = 22; // Y position
 static final int SCBSCBWINW = 200; // Width
 static final int SCBSCBWINH = 20; // Height

GROUPED COMMENTS FOR VARIABLES

Figure 2.10

In the case of structure declarations or procedural sections, the comment is indented to
the same level as the structure declaration or procedure and is preceded and followed by
blank lines. This example is depicted in figure 2.11.

 // Calculate the display dimensions of the string

 fm = aniPriFra.fraGra.getFontMetrics ();
 width = fm.stringWidth (s);
 height = fm.getMaxAscent ();

COMMENTS FOR PROCEDURES

Figure 2.11

All comments shall start with a comment initiator (“//”) and a blank, before the comment
text. Comments shall begin with a capital letter and continue in lower or upper case.
Upper case may be used for emphasis where appropriate.

2.11 Indenting

Because of the nature of the “Java” source file where the “Java” class is to be declared
within the curley braces, indent levels are every 4 columns, smaller than the standard tab
stop that is 8 columns.

This indent level shall be applied throughout all the “Java” files.

 - 16 -

2.12 IF, WHILE and FOR Statement Layout

The general layouts of IF, WHILE, and FOR statements are the same. Examples of the
appropriate layouts are presented in figures 2.12 to 2.15.

 for (i = 0; i < FIREREELS; i++) itsResMod *= FIRESTOPS;

SINGLE CONDITIONAL STATEMENT

Figure 2.12

 for (
 nxt = pztPrzFst;
 nxt != null && nxt.przValue >= value;
 nxt = nxt.przNxt
) prv = nxt;

SINGLE CONDITIONAL STATEMENT WITH LINE OVERFLOW

Figure 2.13

 for (i = 0; i < FIREREELS; i++) {
 res.resReelPos[i] = r % FIRESTOPS;
 r /= FIRESTOPS;
 }

MULTIPLE CONDITIONAL STATEMENT

Figure 2.14

 if (
 (flags & ImageObserver.ERROR) != 0 ||
 (flags & ImageObserver.ALLBITS) == 0
) {
 img.flush ();
 throw new IOException ("Error while loading " + fileName);
 }

MULTIPLE CONDITIONAL STATEMENT WITH LINE OVERFLOW

Figure 2.15

 - 17 -

2.13 IF/ELSE Statement Layout

In the “Java” language, all IF/ELSE statements shall be written in multiple lines. The
layouts for the various forms of the IF/ELSE construct are presented in figures 2.16 and
2.17.

 if (frgScs.scsPlayBut.contains(mouse.mousePoint))
 frgAni.aniPlay ();
 else if (frgScs.scsIncBetBut.contains(mouse.mousePoint))
 frgAni.aniIncBet ();
 else if (frgScs.scsDecBetBut.contains(mouse.mousePoint))
 frgAni.aniDecBet ();
 else if (frgScs.scsIncLinesBut.contains(mouse.mousePoint))
 frgAni.aniIncLines ();
 else if (frgScs.scsDecLinesBut.contains(mouse.mousePoint))
 frgAni.aniDecLines ();
 else if (frgScs.scsShowPztBut.contains(mouse.mousePoint))
 frgAni.aniShowPzt ();
 else if (frgScs.scsCloseBut.contains(mouse.mousePoint))
 frgAni.aniClose ();

MULTIPLE LINE IF/ELSE

Figure 2.16

 // If there is no credit left, automatically initiate
 // game closure

 if (aniCr <= 0) {
 aniState = ANICIP;
 aniRefresh ();
 aniReg.regClose ();
 }

 // If the game has been played too long, enter the
 // played too long state

 else if (aniRes.resTooLong) {
 aniState = ANITOOLONG;
 aniRefresh ();
 }

 // If further credit remains, return to the idle state

 else {
 aniState = ANIIDLE;
 }

MULTIPLE LINE IF/ELSE WITH COMMENTS

Figure 2.17

 - 18 -

2.14 DO…WHILE Statement Layout

The layout for the DO statement is presented in figure 2.18.

 // Select a random number within the results modulus range

 do {
 r = itsGetRand();
 } while (r >= itsResMod);

DO STATEMENT LAYOUT

Figure 2.18

2.15 SWITCH Statement Layout

The formats for the SWITCH statement are presented in figures 2.19 and 2.20.

 switch (msg.msgMtc) {
 case WusMsg.MTCOPS: itsProcOps (msg); break;
 case WusMsg.MTCPLAY: itsProcPlay (msg); break;
 case WusMsg.MTCCPS: itsProcCps (msg); break;
 default:
 throw new RuntimeException ("WusIts::mepCall: bad mtc");
 }

SWITCH STATEMENT LAYOUT – SINGLE LINE CONDITIONS

Figure 2.19

 // Process the appropriate state transition

 switch (aniState) {
 case ANIINIT:
 aniState = ANIUNOPN;
 break;
 case ANINOSL:
 aniState = ANIIDLE;
 aniRefresh ();
 break;
 default:
 aniRefresh ();
 break;
 }

SWITCH STATEMENT LAYOUT – MULTI LINE CONDITIONS

Figure 2.20

 - 19 -

To prevent running out of page width, the “case” labels are always indented to the same
level as the “switch” statement.

2.16 TRY…CATCH Statement Layout

The layout for the TRY…CATCH statement is presented in figure 2.21.

 try {
 wait ();
 }
 catch (InterruptedException e) {
 throw new RuntimeException ("rejEdit: " + e.toString ());
 }

TRY…CATCH STATEMENT LAYOUT

Figure 2.21

Both the “try” and “catch” blocks shall be indented to the same level.

2.17 Expression Layout

Expressions are generally laid out in free format using spaces to indicate the precedence
of arithmetic or logical operations. An example of expression layout is presented in
figure 2.22.

 // Update the credit balance

 funCr += res.resBasic + res.resBonus - bet*lines;
 funTotWin += res.resBasic + res.resBonus;
 res.resCr = funCr;
 res.resTotWin = funTotWin;

EXPRESSION LAYOUT

Figure 2.22

 - 20 -

3 PLAGIARISM

Plagiarism is the work of copying some other author’s work and trying to pass it as off as
original. Plagiarizing other people’s work without recognition is a crime and plagiarists
should be strictly punished.

In academic circles, the penalties for plagiarism range from immediate dismissal to legal
action.

If a programmer uses the work of another author as the source for a new program, the
original author must be acknowledged. The acknowledgement may be either be a short
note in the title block or a comment in the body of the program as depicted in the
examples below:

// MAINTENANCE HISTORY
// DATE PROGRAMMER AND DETAILS
// 12-05-01 CK Original, from Jonathan Searcy, FireFra.java, 13-11-00

EXAMPLE ACKNOWLEDGEMENT OF ORIGINAL AUTHOR IN TITLE BLOCK

Figure 3.1

 // For each reel, calculate the reel position decrements
 // to the desired stop. Adapted from Jonathan Searcy,
 // FireAni.java, 14-11-00

 for (i = 0; i < WUSREELS; i++) {
 startPos = aniReelOfs[i] - decs;
 while (startPos < 0) startPos += WUSSTOPS*WUSFRAMESPERSTOP;
 reqPos = aniRes.resReelPos[i] * WUSFRAMESPERSTOP;
 reelDecs = startPos - reqPos;
 if (i == 0) {
 while (reelDecs < 0)
 reelDecs += WUSSTOPS*WUSFRAMESPERSTOP;
 } else {
 while (reelDecs < 2*WUSFRAMESPERSTOP)
 reelDecs += WUSSTOPS*WUSFRAMESPERSTOP;
 }
 decs += reelDecs;
 aniFraRem[i] = decs;
 }

ACKNOWLEDGEMENT OF ORIGINAL AUTHOR IN BODY OF PROGRAM

Figure 3.2

It is not obligatory to acknowledge the original author when copying your own work.

