RESEARCH AND DEVELOPMENT (SYSTEMYS)
E-GENTING SDN. BHD.

JAVA PROGRAMMING STANDARDS

Firg Draft
Vivian Lim
12 August 2002

1
2

3

TABLE OF CONTENTS

INTRODUGCTION ...ttt sttt saessesaesbesnessesnesneeneeneas 3

JAVA PROGRAMMING.....ccotiiieiesieeteseesteeeesteeste e steeseseesseeee e e sseeeesseensesnessnes 4
21 General Program LayOULcccooeeieeeesieeie et see et e e 4
2.2 Program Title BIOCK.........ccuiiiiiieie st 4
2.3 Import FileS DEClaralions...........ccceierueririeieriesie ettt 5
24 "JAVEA ClasS LAYOULccceieeieeieesieeie e cieseesie e et te e e ese e sseeneeeneesns 6
25 Declaration Of Instance Variables and Array Components............ccceveeeiveennnnns 9
2.6 MEO LAYOULcooieeiiriieiieieeeee ettt 11
2.7 CONSIIUCLOr LBYOULeevieieerieeieeee sttt 12
2.8 Method Naming COnNVENLIONSccceeiueiieiieeiieeie s esieeee e ee e s 13
2.9 Variable Naming CoNVENtIONS...........cooiriireenenieseesie e 14
P20 (O B 0 1 01011 11 RPRPR 14
2250 I 1o (= o111 o S 15
212 IF, WHILE and FOR Statement LayOULcceeeerieereenierienieneesiesiesieseseenens 16
213 IF/ELSE StAEMEN LAYOULcoueeieeieeieieiesiesie st 17
214 DO...WHILE Statement LaYOUL..........cccorerererererereeiesiesie e 18
2.15 SWITCH Statement LayOULccceeiiieiiiieiiieecsiee e s s 18
216 TRY...CATCH Statement LayOUL...........cccoceerirmeieeireniesieesreseesreesne e 19
217 EXPreSSION LAYOUL......ccoiiieiriieiieieeeeesie sttt 19

PLAGIARISM ..ottt sttt st st 20

1 INTRODUCTION

This document specifies the programming standards adopted by the Research and
Development (Systems) Department of E-Genting Sdn. Bhd. for the development of

computer programs using the “Java’ programming language.

The progranming dsandards have been defined from the dandards used in the
development of the Internet games, namey the Wu Shi and FireCracker games, which
both made their debut in the Internet Tournament System (ITS).

These standards exist principdly to preserve the consgency of programming syle in the
“Javd’ language. Beddes, they are dso needed to facilitate the ongoing maintenance of
the sysem as wdl as in the development of the impending Intranet Gaming System (IGS)
and other future sysems that will be employing the use of the “Java’ programming

language.

2 JAVA PROGRAMMING

2.1 General Program Layout

Each “Java’ sourcefile shdl be divided into the following sections:
1. Titleblock,
2. Import declarations,
3. Classlayout section.

Each program section and each “Javd’ class shdl be separated from the next by a single
comment line of dashes preceded and followed by blank lines.

The following sub-sections describe the layout of each section.

2.2 Program Title Block

Each “Java’ source file shdl be headed by a title block smilar to the example showed in
figure 2.1.

/1 FireSca.java - FI RECRACKER SCALER

/1

/1 MODULE | NDEX

/1 NAME CONTENTS

/'l scalLdPi x Load the pixel arrays

/'l scalLdScs Load scal ed slides

/1 scaStop St op | oadi ng

/'l FireSca Const ruct or

/1

/1 MAI NTENANCE HI STORY

/1 DATE PROGRAMVER AND DETAI LS

// 12-11-00 JS Oi gi nal

/1 15-01-01 JS Al ow transparent colour in reel background
/1 24-02-01 JS I npl erent ed Scal er super cl ass

/1
e R R

PROGRAM TITLE BLOCK
Figure2.1

Thetitle block shdl contain the following sections
1. Titleling,
2. Maintenance higory,
3. Moduleindex.

Every line of the title block shdl begin with a comment initiator (“//”) followed by one
gpace. Thisisaso gpplied to dl the blank lines usad in the title block.

-4-

The title line is the firg line of the source file. It consds of the file name, a dash (*-"),
followed by a short one line description of the contents of the source file in capitd |etters.

The “MODULE INDEX” section is only included where there is one or more methods or
constructors declared under a“Java’ class.

The “MODULE INDEX” section consds of a list of the names of the methods declared
in the source file and one line descriptions of the methods. Method names begin a
column 4 and method descriptions at column 25.

The “MAINTENANCE HISTORY” section is included in al source files. It contains a
summay of changes made to the source file The change summaries contain the
fallowing information:

COLUMN | DETAILS
4 Date of the change
17 Initids of programmer who made the change
25 Summary of the changes made

Immediatdly below the line “MAINTENANCE HISTORY”, the comments “DATE’
garts at column 4 and “PROGRAMMER AND DETAILS’ a column 17.

The firg entry in “MAINTENANCE HISTORY” contans the date the program was
written, theinitias of the origind author and the word “Originad” as the description.

The title block is completed by a comment line full of dashes that begins with the
comment initiator (“//”) and immediately followed by dashes (“---") up to column 79.

2.3 Import Files Declarations

Import declarations follow the title block. They are specified in a section on their own,
preceded and followed by aline full of dashes.

Every section of import files declarations is headed by a single line title in capitds letters
describing the section. The dngle line title should be consgent in dl source files, for
example, if theword “IMPORTATIONS’ isused, it should be used in dl files.

An example of an import files declaration section isillustrated in figure 2.2.

/1 1 MPORTATI ONS

inmport java.util.*;
inmport java.aw. *;

i nport java.appl et.*;
import java.aw.inage.*;

IMPORT FILES DECLARATIONS
Figure 2.2

24 “Java’ ClassLayout

The “Java’ class section comes after the import files declarations section. The “Java’
class section shdl contain the following sub- sections:

Class declaration,
Variable declarations,
Method layout,
Constructor layout.

ApwWNPE

An example of the format of a“Java’ classlayout is presented in figure 2.3.

/1 CLASS DECLARATI ON

cl ass WisFrg
ext ends WisMep
i npl enents WisDef, | mageQbserver

{

e e T T
/| STATES
final static private int FRGNCSL = 0; // No slides
final static private int FRGRESC = 1; // Rescale
final static private int FRGANNM = 2; // Animating
e TR
/1 1 NSTANCE DATA
private Appl et frgAppl et ; /1 Parent appl et
private ErrlLog frgErr; /1 Error |ogging instance
private WisMep frgPrj; /1 Projector instance
private WISAni frgAni; /1 Animator instance
private int frgState; /1 Current state
private WisFra frgPriFra; /1 Primary frame
private WisScs frgScs; /'l Scal ed slides
private WisFra frgFraArr[]; /'l Frame array
private int frgFral nd; /1 Frame index
e e
/'l 1 MAGE UPDATE CALLBACK METHCD
public bool ean
i mgeUpdat e (

| mage iy, /1 1 mage being drawn

int fl ags, /1 Information flags

int X, /1 Rectangle information

int y,

i nt wi dt h,

int hei ght)
{

throw new Runti meException ("WsFrg::imgeUpdate");
}
e TR

}
JAVA CLASSLAYOUT
Figure 2.3

Each “Java’ class in a source file shdl be separated by a blank line, followed by a line of
dashes and then a cdlass title in capitd letters. The class title shdl be “CLASS
DECLARATION” in dl cases except where the class name is different from the name of
the source file. The layout for this example is illustrated in figure 24. A blank line then
followsthe classtitle.

The fird line of the class declaration is the class name (which certainly must be the same
as the file name) and any type of class modifiers (eg. public, private, find etc.). The
second line is the indication to its superclass (e.g. extends [superclass name]). The third
line shdl be the indication to its ‘Interface class or casses (eg. implements [interface
class name]). The example of thislayout is shown in figure 2.3.

If there is no reference to any superclass, the contents of the third line shdl certainly be
on the second line, as shown in figure 2.4.

All dass names shdl begin with the uppercase and continue in lowercase. If a dlass
name contains more than one conjoint word, the firgt letter of each word shdl begin with
acapitd letter (eg. LinkedList, Scder, WusPrz, FireAni).

/'l PRI ZE ENTRY

class WisPrz {

WisPr z przNxt ; /'l Next prize in value order
i nt przConb[]; /1 Conbi nation
i nt pr zVal ue; /1 Prize value
}
e e T T R

/1 CLASS DECLARATI ON

cl ass WisPzt
i npl enent s WisDef

{
R R LR TR TR
/1 | NSTANCE DATA
private WisPrz pzt PrzFst; /1 First prize

}

MULTIPLE CLASSESLAYOUT
Figure2.4

Variables declarations section immediately follows the first opening of the curley braces.

Variable declarations, method declarations and congtructor declarations are indented by 4
columns (a hdf of one standard tab stop).

Specification of the variables declarations, method declarations and congructor
declarations shall be in sections 2.5, 2.6 and 2.7 respectively.

2.5 Declaration Of Instance Variablesand Array
Components

An example of variables declarations section is presented in figure 2.5.

/| STATES
final static private int ANIINIT = 0; /1 Initialising

final static private int ANI NCSL = 1, /1 No slides
final static private int AN UNCPN = 2; /1 Sessi on unopened

/'l I NSTANCE DATA

private Appl et ani Appl et ; /'l Parent appl et

private ErrlLog ani Err; /1 Error |og instance

private FireReg ani Reg; /1 Results generator instance

R R e R R E LT

/1 TEXT BORDER DI SPLAY OFFSETS

final static int ani Bdr XOf s
final static int ani Bdr YO' s

—r—

—
I

-

0 -1, -1 -1, 0, 1, 1, 1}

DECLARATION OF CLASSDATA
Figure 2.5

This section may further be divided into 2 or more sub-sections, if there are ingtance
vaiables and aray components in a file. For example, in figure 2.5, the first sub-section
shdl be the declaration of datic ingance variables, the second sub-section shdl be the
declaration of ingance varidbles and the third sub-section is the declaration for array
components.

Each section of the variables declarations is preceded by a blank line, a line of dashes,
ancother blank line and then a title in capitd letters. The comment line full of dashes that
separates each section starts at column 4 and ends at column 79.

Each varidble shdl be decdlared on a single line containing the type declaration of the
vaiadle, the name of the variable, and a comment describing the variable as indicated in
figure 2.5.

Consecutive variable declarations shdl be digned on tab sops a the following point
wherever possible:

1. Specification of the type of the variables,
2. Specification of the names of the variables,
3. Commentsrelated to the variables.

Comments describing the variable should begin with a capitd letter, continue in
lowercase and form a clause, sentence or satement.

Specification of the variable naming conventions will be described in section 2.9.

-10-

2.6 Method Layout

Each method layout in a “Java’ class shall be separated by a blank line, a line of dashes,
another blank line, followed by a single title that describes the method in capitd letters,
and then, a blank line again. The format of the method layout shal be in accordance with
the example in figure 2.6.

/1 LOAD A COVBI NATI ON | NTO THE PRI ZE TABLE

private void

pzt Load (
int synb0, /'l First synbol
int synbl, /'l Second synbol
int synb2, /1 Third synbol
int val ue) /1 Prize value
{ WisPr z nxt ; /1 Next prize table el enent
WIsPr z prv; /1 Previous prize table el enment
WisPr z p; /1 New prize table el enent
prv = null;
for (
nxt = pztPrzFst;
nxt !'= null && nxt.przVal ue >= val ue;

nxt = nxt. przNxt
) prv = nxt;

METHOD LAYOUT
Figure 2.6

The fird line of the method declaration is the type of the method (e.g. void, boolean, int
efc) and any type of access modifiers (eg. private, public or protected) together with
other type of modifiers (eg. ddtic, fina, synchronized etc.). The second line is the name
of the method and the opening parenthess of the argument. If the method has no
arguments, the cloang parenthess is dso placed on the second line. The arguments are
then declared on successve lines indented one tab stop as shown in the example in figure
2.6. Comments for each argument are optiond.

The preferred indentation levels of the argument names and comments are column 24 and
40 respectively.

If the method throws exceptions, the “throws’ clause shdl be placed on the line
immediatdy after the last argument of the method, as demondtrated in figure 2.7.

-11-

/1 PROCESS AN | TS REQUEST

publ i c Unpack

conProcReq (
short ttc, /1 Transaction type code
byt e bdy[], // Body data
int of s, /1 Body of f set
int | en) /1 Body | ength

throws Reject

METHOD WITH THROWING EXCEPTIONS
Figure 2.7

Locd vaiable declarations, if there are any, immediady follow the first opening braces
of the method.

Locd variable declarations and the outermost level of the method procedure are both
indented to the firg tab stop. The preferred indentation levels for locd variable names
and local variable comments are column 24 and 40 respectively.

Specification of the method naming conventions will be described in section 2.8.

2.7 Constructor Layout

Each condtructor in a“Java’ class shdl be separated by ablank line, aline full of dashes,
another blank line, followed by thetitle and then, ablank line again. The format for the
constructor layout is presented in figure 2.8.

/1 CONSTRUCTCR

Fi reMep (
String nane,
ErrLog err) /1 Error |ogging instance

mepNane = nane;

mepErr = err;

mepWai ting = fal se;

mepMeq = new Li nkedLi st ();

CONSTRUCTOR METHOD LAYOUT
Figure 2.8

-12 -

The fird line of the congructor declaraion is the name of the congructor followed by the
opening parenthess of the argument. If the condructor has no arguments, the closng
parenthesis is placed on the firg line of the declaration. The arguments are then declared
on consecutive lines indented one tab stop as shown in the example in figure 28. The
indent levels for argument names and comments are the same as in method layout.
Comments for each argument are optiond.

2.8 Method Naming Conventions

Methods shdl be named according to the class name. Each method name shdl have a
prefix taken from a part of its class name. All prefix characters are in lowercase and the
word or words that follow the prefix will each have a capitd letter for the beginning of
each word. The prefix and the word or words shal be conjoined in that order to form a
one-word name. For example, if the class name is “FireFrg”, a method of the class could
be named “frgSendFrame’.

The word or words used after the prefix should be in accordance to the description of the
methods. For example, if a method in the “Scaler” class has the description of “GRAB
PXELS’, the method shal be called “scaGrabPix”.

However, the above naming conventions do not apply to constructor and destructor
methods, and other special “Java’ class methods such as the “Applet” class. Constructor
methods shdl certainly have the same name as their classes and destructor method shal
have their “Java’ findizer method, which is“findize’.

These naming conventions are important to preserve readability and understandability of

the method names. More importantly, they facilitate the use of “gref” to find dl
references to amethod or varidble in alarge system.

-13-

2.9 Variable Naming Conventions
In generd, variable names shall have between 1 to 18 characters.

Variables shdl be named according to the class name. Each variable shdl have a prefix
taken from its class name. The word or words used after the prefix shal correspond to the
meaning of the variables used. The prefix and the word or words shal be conjoined to
cregte a Javaidentifier.

Instance varigbles shdl have different naming conventions from locd varigbles

For ingance variables, the prefix shdl sat from the second capitd letter of the class
name. All prefix characters shal be in lowercase and the word or words that follow the
prefix will each have a capitd letter for the beginning of each word. For example, if the
classnameis“WusMousg’, an instance variable could be named “ mousePoint”.

For ingance varigbles that have the “satic’ modifier, the prefix shdl be taken from the
fird conjoint word of the class name. All the letters of every daic vaiable shdl be in
uppercase. For example, if the class name is “FireDef”, a class variable could be named
“FIRESYMTOWER".

For locd variables they shdl have flexible naming conventions without having to be
named according to the class name.

2.10 Comments
Comments are inserted into the “ Java’ filesin two manners.
In the case of declaration of class variables and instance variables, @mments are placed

in the same line as the variables, adjacent to the variable item. This example is depicted
infigure 2.9.

| rage fral ng; /1 Frane inage
G aphi cs fraG a; /'l Graphics context
Rect angl e f raBuf Rect ; /1 Buffer update rectangle
Rect angl e fraPrj Rect; /1 Projection update rectangle
COMMENTS FOR VARIABLES
Figure 2.9

Comments for variables may aso be grouped if some variables share the same comment,
as shown in figure 2.10. In this example, comments are indented to the same leve as the
variables declarations and are preceded and followed by blank lines.

-14-

/1 Title panel dinensions

static final int SCBTTLPANX = O; /1 X position
static final int SCBTTLPANY = O; /1 Y position
static final int SCBTTLPANW = 556; /1 Wdth
static final int SCBTTLPANH = 60; /1 Hei ght

/1 "Gty of Entertainment' w ndow di nensions

static final int SCBCOEW NX = 228; /1 X position
static final int SCBCCEW NY = 5; /1 Y position
static final int SCBCCOEW NW = 100; /1 Wdth
static final int SCBCCEW NH = 20; /1 Hei ght

/1 ' SCOREBOARD wi ndow di nensi ons

static final int SCBSCBW NX = 178; /1 X position
static final int SCBSCBW NY = 22; /1 Y position
static final int SCBSCBW NW = 200; /] Wdth
static final int SCBSCBW NH = 20; /1 Hei ght

GROUPED COMMENTS FOR VARIABLES
Figure 2.10

In the case of dructure declarations or procedural sections, the comment is indented to
the same level as the Sructure declaration or procedure and is preceded and followed by
blank lines. Thisexampleis depicted in figure 2.11.

/1 Calculate the display dinensions of the string

fm= aniPriFra.fraGa.getFontMetrics ();
width = fmstringWdth (s);
hei ght = fm get MaxAscent ();

COMMENTS FOR PROCEDURES
Figure 2.11

All comments shdl gart with a comment initiator (*//") and a blank, before the comment

text. Comments shdl begin with a capitd letter and continue in lower or upper case.
Upper case may be used for emphasis where appropriate.

2.11 Indenting
Because of the nature of the “Java’ source file where the “Java’ class is to be declared
within the curley braces, indent levels are every 4 columns, smdler tan the standard tab
stop that is 8 columns.

Thisindent level shdl be gpplied throughout dl the “ Java’ files.

-15-

2.12 IF, WHILE and FOR Statement L ayout

The generd layouts of IF, WHILE, and FOR statements are the same. Examples of the
appropriate layouts are presented in figures 2.12 to 2.15.

for (i =0; i < FIREREELS; i++) itsResMd *= Fl RESTOPS;

SINGLE CONDITIONAL STATEMENT
Figure2.12

for (
nxt = pztPrzFst;
nxt !'= null && nxt.przValue >= val ue;
nxt = nxt.przNxt

) prv = nxt;

SINGLE CONDITIONAL STATEMENT WITH LINE OVERFLOW
Figure 2.13

for (i = 0; i < FIREREELS; i++) {
res.resReel Pos[i] =r % Fl RESTOPS;
r /= FI RESTOPS;

MULTIPLE CONDITIONAL STATEMENT
Figure2.14

if (
(flags & I mageChserver. ERROR) !'= 0 ||
(flags & I mageCobserver. ALLBITS) == 0
) {

ing.flush ();
throw new | CException ("Error while loading " + fil eNane);

MULTIPLE CONDITIONAL STATEMENT WITH LINE OVERFLOW
Figure 2.15

- 16 -

2.13 IF/EL SE Statement L ayout

In the “Javd’ language, dl IFELSE datements shdl be written in multiple lines The
layouts for the various forms of the IFFELSE condruct are presented in figures 2.16 and
2.17.

if (frgScs. scsPl ayBut. contai ns(nouse. nousePoi nt))
frgAni.ani Play ();

else if (frgScs. scslncBet But. contai ns(nmouse. nousePoi nt))
frgAni.anilncBet ();

else if (frgScs. scsDecBet But. contai ns(nouse. nousePoi nt))
frgAni . ani DecBet ();

else if (frgScs. scslncLinesBut. contai ns(mouse. mousePoint))
frgAni.anilncLines ();

else if (frgScs. scsDecLi nesBut. contai ns(nouse. nousePoint))
frgAni . ani DecLi nes ();

else if (frgScs. scsShowPzt But. cont ai ns(nmouse. nousePoi nt))
frgAni . ani ShowPzt ();

else if (frgScs.scsd oseBut. contai ns(nmouse. nousePoi nt))
frgAni.ani dose ();

MULTIPLE LINE IF/ELSE
Figure 2.16

/1 1f there is no credit left, automatically initiate
/1 gane cl osure

if (aniO <= 0) {
ani State = ANLCI P,
ani Refresh ();
ani Reg. regd ose ();
}

/1 1f the ganme has been played too |ong, enter the
/1 played too long state

else if (ani Res.resToolLong) {
ani State = ANl TOOLONG
ani Refresh ();

}

/] |f further credit remains, return to the idle state

el se {
ani State = ANl | DLE;
}

MULTIPLE LINE IF/FELSE WITH COMMENTS
Figure 2.17

-17 -

2.14 DO...WHILE Statement Layout

The layout for the DO statement is presented in figure 2.18.

/1 Select a random nunber wi thin the results nmodul us range

do {
r = itsCGtRand();
} while (r >= itsResMd);

DO STATEMENT LAYOUT
Figure 2.18

2.15 SWITCH Statement Layout

The formats for the SWITCH statement are presented in figures 2.19 and 2.20.

switch (nmsg. nsgMc) {

case WisMsg. MTCOPS: itsProcOps (msgQ); br eak;
case WisMsg. MTCPLAY: itsProcPlay (msg); br eak;
case WisMsg. MTCCPS: itsProcCps (msgQ); br eak;
defaul t:

t hrow new Runti meException ("Wislts::nepCall: bad ntc");
}

SWITCH STATEMENT LAYOUT — SINGLE LINE CONDITIONS
Figure 2.19

/1 Process the appropriate state transition

switch (ani State) {
case ANIINIT:
ani State = AN UNOPN;
br eak;
case AN NOSL:
ani State = ANl | DLE;
ani Refresh ();
br eak;
defaul t:
ani Refresh ();
br eak;

SWITCH STATEMENT LAYOUT —MULTI LINE CONDITIONS
Figure 2.20

- 18-

To prevent running out of page width, the “case” labdls are dways indented to the same
level asthe “switch” statement.

2.16 TRY...CATCH Statement Layout

Thelayout for the TRY ...CATCH statement is presented in figure 2.21.

try {
wait ();

catch (InterruptedException e) {
throw new Runti meException ("rejEdit: " + e.toString ());
}

TRY...CATCH STATEMENT LAYOUT
Figure2.21

Both the “try” and “catch” blocks shal be indented to the same leve.

2.17 Expression Layout

Expressons are generdly lad out in free format usng spaces to indicate the precedence
of aithmetic or logicd operdions. An example of expresson layout is presented in
figure 2.22.

/1 Update the credit bal ance

funCr += res.resBasic + res.resBonus - bet*lines;
funTot Wn += res.resBasic + res.resBonus;
res.resC = funC;

res.resTotWn = funTot Wn;

EXPRESSION LAYOUT
Figure 2.22

-19-

3 PLAGIARISM

Plagiariam is the work of copying some other author’s work and trying to pass it as off as
origind. Plagiarizing other people's work without recognition is a crime and plagiariss
should be grictly punished.

In academic cirdes, the pendties for plagiaism range from immediate dismissd to legd
action.

If a programmer uses the work of another author as the source for a new program, the
origind author must be acknowledged. The acknowledgement may be ether be a short
note in the title block or a comment in the body of the program as depicted in the
examples below:

/1 NMAI NTENANCE HI STORY
/| DATE PROGRAMVER AND DETAI LS
/1 12-05-01 K Oiginal, fromJonathan Searcy, FireFra.java, 13-11-00

EXAMPLE ACKNOWLEDGEMENT OF ORIGINAL AUTHOR IN TITLE BLOCK
Figure 3.1

/'l For each reel, calculate the reel position decrenents
/1 to the desired stop. Adapted from Jonat han Searcy,
/! FireAni.java, 14-11-00

for (i =0; i < WISREELS; i++) {
startPos = ani Reel Os[i] - decs;
while (startPos < 0) startPos += WJSSTOPS* WUSFRAMESPERSTOP;
regPos = ani Res.resReel Pos[i] * WJSFRAMESPERSTOPR;
reel Decs = startPos - reqPos;
if (i ==0) {
while (reel Decs < 0)
reel Decs += WJSSTOPS* WUSFRAMESPERSTOPR;
} else {
whil e (reel Decs < 2* WUISFRAMESPERSTOP)
reel Decs += WJSSTOPS* WUSFRAMESPERSTOPR;
}
decs += reel Decs;
ani FraRen{i] = decs;

ACKNOWLEDGEMENT OF ORIGINAL AUTHOR IN BODY OF PROGRAM
Figure 3.2

It is not obligatory to acknowledge the origina author when copying your own work.

-20-

